This talk surveys how KAK decompositions of the unitary group have been applied to quantum computing. Such decompositions view $U(2^n)$ as the space of quantum computations of arbitrary complexity and (often) choose $K \subseteq U(2^n)$ to be the symmetry subgroup of the (real) quadratic form which carries $(x,y) \in (\mathbb{C}^{2^n})^2$ to the component of x on the spin-flip of y. In two qubits, $K = SU(2) \otimes SU(2)$ which is conjugate to $SO(4)$, and $U(4) = SU(2) \otimes^2 A SU(2) \otimes^2$ has been exploited in quantum control theory (Khaneja,Brockett,Glaser, Physical Review A 63 032308) and CNOT-optimized two qubit logic circuits (Vidal, Dawson PRA 69 010301) (Shende, Bullock, Markov, PRA 70 012310). In the general case, K is symplectic or orthogonal as n is odd or even, and in the latter case the KAK decomposition has implications for an entanglement monotone (Bullock,Brennen,O’Leary, Journal of Mathematical Physics 46 062104). Certain constructions generalize to involutions other than spin flips (D’Alessandro,Albertini preprint). (Received September 12, 2007)