Collapsing is a combinatorial analog of contractibility for smooth spaces. Many problems in topology and combinatorics reduce to analyzing a simplicial complex, and in particular whether the complex collapses to a point. In practice, checking for collapsibility can be computationally intensive if the order in which one collapses affects the outcome. While it is straightforward to find a way to collapse any n-simplex to a point, it is less obvious whether one can perform collapses in a different order and get "stuck", with no more available collapses, before arriving at a single point. Previously, Crowley and Ebin showed that if $n \geq 7$, then it is possible to collapse an n-simplex to the dunce hat or Bing’s house with two rooms, neither of which can be collapsed further. We will answer the question for $n \leq 6$. (Received September 16, 2008)