We explore conditions under which matchings in the d-dimensional hypercube extend to perfect matchings. In a bipartite graph G, a set $S \subseteq V(G)$ is deficient if the vertices of S together have fewer than $|S|$ neighbors. Let M be a matching (with vertex set U) in the d-dimensional hypercube such that $Q_d - U$ has no deficient set of size less than k. If $|M| \leq k(d - k) + \binom{k-1}{2}$, then M extends to a perfect matching. Furthermore, this result is sharp. (Received September 15, 2008)