We say a $0 - 1$ matrix A avoids a pattern P if no submatrix of A can be transformed into P by changing some ones to zeroes. We call P an m-tuple permutation matrix if P can be obtained by replacing each column of a permutation matrix with m copies of that column. In this paper, we investigate $n \times n$ matrices that avoid P and the maximum number $ex(n, P)$ of ones that they can have. We prove a linear bound on $ex(n, P)$ for any 2-tuple permutation matrix P, resolving a conjecture of Keszegh (J. Combin. Theory Ser. A (2008), doi: 10.1016/j.jcta.2008.05.006). Using this result, we obtain a linear bound on $ex(n, P)$ for any m-tuple permutation matrix P. Additionally, we demonstrate the existence of infinitely many minimal non-linear patterns, resolving another conjecture of Keszegh from the same paper. (Received September 11, 2008)