We adapt a definition for secondary domination by Hedetniemi et.al. to directed graphs. In particular we consider the \((1, 2)\)-domination graph of tournaments. Given a directed graph \(D\), two vertices \(x\) and \(y\) form a \((1, 2)\)-dominating pair if and only if, for any other vertex in the graph \(z\), you can reach \(z\) in at most one step from one of \(x\) or \(y\) and in at most two steps from the other vertex. A \((1, 2)\)-domination graph on the vertex set of \(D\) has edge \(xy\) if and only if \(x\) and \(y\) are a \((1, 2)\)-dominating pair of \(D\). We examine the structure of \((1, 2)\)-domination graphs of tournaments. (Received September 12, 2008)