Majorization partial order on P_n, the lattice of integer partitions, can be expressed as a tail sum. For each n, the mth power of the tail sum defines a poset $P_n:m$. For each n, the collection $P_n:m$ is a finite chain of distinct combinatorial posets extending majorization and contracting the reverse lex chain order on the maximum poset $P_n:M$ in this collection. Close predecessors of the maximal proper posets in this collection provide an infinite collection of unranked combinatorial posets. We investigate a particular computability of meet and join in the posets $P_n:m$ and relate the valid exponents on the tail to M. (Received September 16, 2008)