Let p be a prime, n be an integer, $k|p^n - 1$, and $\gamma(k, p^n)$ be the minimal value of s such that every number in \mathbb{F}_{p^n} is a sum of s k^{th} powers (should such exist). Heilbronn conjectured that for \mathbb{F}_p that $\gamma(k, p) \ll \sqrt{k}$ if there are more than 2 non-zero k^{th} powers in \mathbb{F}_p. Here we provide an outline of a proof for a generalization to \mathbb{F}_{p^n}. (Received September 16, 2008)