Rump’s model problem is the problem to globally minimize real polynomial product 2-norms:

\[\mu_n = \min \{ \|PQ\|_2 \mid P, Q \in \mathbb{R}[z], \|P\|_2 = \|Q\|_2 = 1 \]

and \(\deg(P) = \deg(Q) = n - 1 \} \).

In our ISSAC 2008 paper we compute upper bounds for \(\mu_n \) for \(n \leq 79 \) and certified lower bounds for \(n \leq 14 \). It is possible from the optimal polynomials \(P \) and \(Q \) to compute integer polynomials with good lower bounds for the maximal single factor height ratio

\[c_n = \max_{F,G} \chi_n \]

s. t. \(\min(\|F(z)\|_\infty, \|G(z)\|_\infty) = \chi_n \|F(z) \cdot G(z)\|_\infty \)

\(F, G \in \mathbb{Z}[z] \text{ irreducible, } \deg(F) + \deg(G) = n \)

and integer polynomials with Mahler measure near 1 [Lehmer’s problem]. My talk will describe our computational and search strategies, including those suggested by David Boyd and Lihong Zhi, and what polynomials I have found so far. (Received September 17, 2008)