We study cyclotomic polynomials of odd degree with coefficients in the set \{-1, +1\}. In 1999, P. Borwein and K. K. Choi conjectured that \(P(x) \) is a cyclotomic polynomial of degree \(N - 1 \) with coefficients in the set \{-1, +1\} if and only if
\[
P(x) = \pm \Phi_{p_1}(\pm x)\Phi_{p_2}(\pm x^{p_1}) \cdots \Phi_{p_k}(\pm x^{p_1p_2\cdots p_{k-1}})
\]
for some (not necessarily distinct) primes \(p_1, p_2, \ldots, p_k \) such that \(N = p_1p_2\cdots p_k \). Here \(\Phi_p(x) = 1 + x + \cdots + x^{p-1} \) is the \(p \)th irreducible cyclotomic polynomial. They proved this conjecture for polynomials of even degree. In 2008, S. Akhtari and K. K. Choi proved the conjecture for degree \(2^ap^b - 1 \) with \(p \) an odd prime and for \(P(x) \) separable. By using Newton’s identities to compare the power sums of \(P(x) \) with a specific class of power sums, we prove the conjecture for degree \(2^apq - 1 \) with \(p, q > 2^{i+1} \) odd primes. In particular, this resolves the case of degree \(2pq - 1 \). (Received September 11, 2008)