An overring T of an integral domain R is t-linked over R if for each finitely generated ideal I of R, $(R : I) = R$ implies $(T : IT) = T$. If each overring is t-linked, then R is said to be t-linkative, and R is super t-linkative if each overring is t-linkative. The focus here is on the notion of generally t-linkative domains: R is said to be generally t-linkative, if the generalized ring of quotients $R_{\mathcal{F}}$ is t-linkative for each finite type system of ideals \mathcal{F}. In general, R is generally t-linkative if and only if for finite type systems \mathcal{F} and \mathcal{G}, both $R_{\mathcal{F}}$ and $R_{\mathcal{G}}$ are flat over R and $R_{\mathcal{F}} = R_{\mathcal{G}}$, implies \mathcal{F} and \mathcal{G} have the same saturation. For Noetherian domains, there is no difference between being super t-linkative and generally t-linkative, each is equivalent to the domain in question being either one-dimensional or a field. In contrast, a one-dimensional Mori domain is generally t-linkative but need not be super t-linkative, and there are two-dimensional Mori domains that are generally t-linkative. (Received September 14, 2008)