Let \(\rho : G \hookrightarrow GL(n, F) \) be a faithful representation of a finite group \(G \) over a field \(F \). It induces an action of the group on the vector space \(V = F^n \), thus on the dual space, and hence on the symmetric algebra on the dual, denoted by \(F[V] \). The subring of invariant polynomials is denoted by \(F[V]^G \). If \(n = 2 \) and \(F \) a finite field of characteristic \(p \) and order \(q = p^s \), then a \(p \)-Sylow subgroup \(G \) of \(GL(2, F) \) consists of all upper triangular matrices with 1’s on the diagonal. This is then an elementary abelian \(p \)-group of rank \(s \). Its invariants form a polynomial ring. We are interested in the \(n \)-fold vector invariants of this representation. As \(n \) increases these rings become more and more complicated, e.g., if \(n \geq 3 \) then the invariants are no longer Cohen-Macaulay. Nevertheless, we are able to present a complete generating set of these invariants. Furthermore, we expect that we can generalize our results to vector invariants of arbitrary \(p \)-groups. This work is done under the supervision of Prof. Dr. Mara D. Neusel and supported by the Barry M. Goldwater Foundation. (Received June 03, 2008)