The core of an ideal is defined to be the intersection of all its reductions. A reduction of \(I \) is a subideal \(J \subseteq I \) with the property that \(JJ^r = I^{r+1} \) for some integer \(r \geq 0 \). The core arises naturally in the context of the Briançon-Skoda theorem, as well as in algebraic geometry, and in many cases is connected to adjoint (multiplier) ideals. One would like to have a combinatorial description of the core of monomial ideals. I provide such a description for the case of \(\mathfrak{m} \)-primary monomial ideals in a polynomial ring \(K[x,y] \). (Received August 25, 2008)