A genus 2 curve C has an elliptic subcover if there exists a degree n maximal covering $\psi : C \to E$ to an elliptic curve E. Degree n elliptic subcovers occur in pairs (E, E'). The Jacobian J_C of C is isogenous of degree n^2 to the product $E \times E'$. We say that J_C is (n, n)-split. The locus of C, denoted by \mathcal{L}_n, is an algebraic subvariety of the moduli space \mathcal{M}_2.

We give a brief description of the spaces \mathcal{L}_n for a general n and then focus on small n. We describe some of the computational details how to compute explicitly the space \mathcal{L}_n. Furthermore, we explicitly describe the relation between the elliptic subcovers E and E'. We have implemented most of these relations in computer programs which check easily whether a genus 2 curve has $(2, 2)$ or $(3, 3)$ split Jacobian. In each case the elliptic subcovers can be explicitly computed. (Received September 10, 2008)