Chris Kennedy* (christopher.kennedy@cnu.edu), Christopher Newport University, 1 University Place, Newport News, VA 23606. Simple and Nearly Simple Deep Matrix Algebras.

The deep matrix algebra $\mathcal{D}M(X, \mathbb{K})$ based on a set X over a field \mathbb{K} is a deeper version of a standard matrix algebra. We present several key associative subalgebras of $\mathcal{D}M(X, \mathbb{K})$, and use these in the construction and study of several deep matrix Lie algebras. These are shown to be either simple or nearly simple (possessing a unique non-zero proper ideal) depending on the cardinality of the set X. Cartan subalgebras are constructed and two of the Lie algebras are then decomposed with respect to the adjoint action of these subalgebras. In the process, an infinite dimensional analogue to $\mathfrak{sl}_2(\mathbb{K})$ is naturally realized as a key subalgebra in deep matrix Lie algebras. (Received September 12, 2008)