It has long been known that only two manifolds are minimal in the category of symmetric spaces $X = G/K$ of rank greater than 1. (We assume G is a connected, semisimple Lie group with no compact factors.) Namely, every symmetric space in this category contains either the product of two hyperbolic planes or the symmetric space associated to $SL(3, \mathbb{R})$. The corresponding problem for noncompact spaces of finite volume that are locally symmetric, rather than symmetric, also has a fairly simple answer, even though infinitely many manifolds are minimal in this category. The proof goes through a case-by-case analysis of the possible \mathbb{Q}-forms of G. The compact case will have a more complicated answer, and remains open. (Received September 15, 2008)