Szegö (see for example his book) introduced the mapping $2x = z + 1/z$ between real Szegö polynomials (i.e. real orthogonal polynomials on the unit circle) and orthogonal polynomials on the interval $[-1, 1]$. Using this mapping Geronimus in [1962] derived the relations between the coefficients of the associated recurrence relations. Delsarte and Genin [1986], through the mapping $2x = \sqrt{z} + 1/\sqrt{z}$, obtained the connection between real Szegö polynomials and symmetric orthogonal polynomials on $[-1, 1]$, which was further explored, for example, in Zhedanov [1994]. In Sri Ranga [1995] the mapping $2x = \sqrt{t} - 1/\sqrt{t}$ was used to obtain a relation between a type of orthogonal L-polynomials on $(0, \infty)$ and symmetric orthogonal polynomials on $(-\infty, \infty)$. Finally in Andrade, Bracciali and Sri Ranga [2007] the mapping $2x = z + 1/z$ was used to obtain a relation between another type of orthogonal L-polynomials on $(0, \infty)$ and orthogonal polynomials on $(1, \infty)$. The objective here is to look at these relations from a different point of view. This also reveals some Relations between T-fractions and J-fractions. (Received September 15, 2008)