We show that if \(u = G_\lambda f \) is the solution operator for the Robin problem for the Laplacian, i.e. \(\Delta u = f \) in \(\Omega \), \(\partial_\nu u + \lambda u = 0 \) on \(\partial \Omega \) (with \(0 \leq \lambda \leq \infty \)), then \(G_\lambda : L^p(\Omega) \to W^{2,p}(\Omega) \) is bounded if \(1 < p \leq 2 \) and \(\Omega \subset \mathbb{R}^n \) is a bounded Lipschitz domain satisfying a uniform exterior ball condition. This extends the earlier results of V. Adolfsson, B. Dahlberg, S. Fromm, D. Jerison, G. Verchota, and T. Wolff, who have dealt with Dirichlet \((\lambda = \infty) \) and Neumann \((\lambda = 0) \) boundary conditions. (Received August 19, 2008)