Centralizers in the Interval Exchange Group.

Let \mathcal{E} represent the group of interval exchange transformations. For $f \in \mathcal{E}$, the structure of the centralizer $C_\mathcal{E}(f)$ is characterized by the dynamical properties of f. If f is topologically minimal, then either $C_\mathcal{E}(f)$ is virtually abelian and contains a torus subgroup, or $C_\mathcal{E}(f)$ is virtually cyclic. These situations are distinguished by the growth rate of the discontinuities of f under iteration. If f has finite order, then $C_\mathcal{E}(f)$ contains a subgroup isomorphic to \mathcal{E}. In general, $C_\mathcal{E}(f)$ is characterized by the occurrence of these dynamical situations on maximal invariant subsets of f. This characterization of centralizers is used to prove $\text{Aut}(\mathcal{E}) \cong \mathcal{E} \rtimes \mathbb{Z}/2\mathbb{Z}$. (Received September 16, 2008)