The Marcinkiewicz function spaces M_W generated by a decreasing weight $w : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ are the spaces of measurable functions f satisfying $\|f\|_W = \sup_{t>0} \frac{\int_0^t f^*(s)}{W(t)} < \infty$, where f^* is the decreasing rearrangement of f and $W(t) = \int_0^t w$. We also define $M^0_W = \{f \in M_W : \lim_{t \to 0^+} \frac{\int_0^t f^*}{W(t)} = 0\}$. M^0_W is the subspace of all order continuous elements of M_W. The dual of M^0_W is the Lorentz space $\Lambda_{1,w}$ with the norm $\|f\|_{1,w} = \int_0^\infty f^*w$.

Theorem: Let $f \in S_{M_W}$ (or $f \in S_{M^0_W}$). Then f is a smooth point in M_W (or M^0_W) if and only if there exists a unique $0 < a < \infty$ such that

$$1 = \|f\|_W = \int_0^a \frac{f^*}{W(a)}.$$

Theorem: A function $f \in S_{M_W}$ is an extreme point if and only if $f^* = w$. M^0_W does not have any extreme points. (Received September 11, 2008)