X \subseteq \mathbb{N} \text{ tiles the plane} if there is a tiling of the plane consisting of exactly one square each of side-length \(n \) for every \(n \in X \). In [1] we prove that \(\mathbb{N} \) tiles the plane. It is easy to show that if \(X \) contains every sum of two distinct members of \(X \), then \(X \) tiles the plane. We show here that if \(X \) contains no such sums then \(X \) doesn’t tile the plane. We show in addition that the prime numbers do not tile the plane and that there is a set such that it and its complement each tile the plane.