Mourgues and Ressayre showed that every real closed field has an integer part. Their construction involves mapping the given real closed field R isomorphically onto a truncation closed sub-field of the field $k⟨⟨G⟩⟩$, where G is the natural value group of R and k is the residue field. We refer to the image of $r ∈ R$ as its development. If G has cardinality $κ$, then the developments may have arbitrary ordinal length less than $κ^+$. We consider the case where R is countable, and we list the elements of a transcendence base for R over k—$r_1, r_2, ...$. In terms of this list, the Mourgues and Ressayre construction becomes canonical. Let R_n be the real closure of $R_n(r_1, ..., r_n)$. By a result of Shepherdson, the elements of R_1 have developments of length at most $ω$. We show that elements of R_n have developments of length at most $ω^{ω^{(n-1)}}$. Thus, the elements of R have developments of length less than $ω^{ω^{ω}}$. These bounds are sharp. Letting G be generated by a single infinitesimal, we produce a sequence of elements $r_1, r_2, ...$ such that for each $n ≥ 1$, R_n contains an element whose development has length $ω^{ω^{(n-1)}}$. (Received September 15, 2009)