One challenging problem is counting pattern-avoiding set partitions. A set partition can be written in a uniform way if each block is written in increasing order, and the blocks are ordered by increasing minimal elements. With this convention, any set partition of \(\{1, \ldots, n\} \) can be encoded as a string \(s_1 \cdots s_n \) where \(s_i = j \) if element \(i \) lies in block \(j \). It is easily seen that a partition is non-crossing if its string encoding avoids the pattern 1212. Further results involving pattern-avoiding set partitions were developed by Klazar, Sagan, and Goyt.

Motivated by recent results for pattern avoidance in colored permutations, we define the notion of pattern-avoiding colored partitions. A colored set partition is one where each number of the set partition is assigned one of \(k \) colors. Given colored set partitions \(P \) and \(R \), let \(P^* \) and \(R^* \) be the underlying uncolored set partitions for \(P \) and \(R \) respectively. We say \(P \) contains \(R \) if \(P^* \) contains \(R^* \) as a subpartition, and if the colors on the subpartition equal those of \(R \). Initial enumerative results will be provided as well as conjectured relationships to other combinatorial objects. (Received September 21, 2009)