The Ramsey number $R(G, H)$ is the smallest positive integer n such that any graph on n vertices contains G as a subgraph or H in the complement. We derive a new upper bound of 26 for the Ramsey number $R(K_5 - P_3, K_5)$, improving on the previous upper bound of 28. This leaves $25 \leq R(K_5 - P_3, K_5) \leq 26$.

We also show, with the help of a computer, that $R(B_2, B_6) = 17$ and $R(B_2, B_7) = 18$ by full enumeration of (B_2, B_6)-good graphs and (B_2, B_7)-good graphs, where B_n is the book graph with n triangular pages. (Received August 01, 2009)