A square cycle is the graph obtained from a cycle by joining every pair of vertices of distance two in the cycle. A classical Theorem of Dirac asserts that every graph with minimum degree at least $n/2$ contains a hamiltonian cycle. As a generalization of Dirac’s theorem, Pósa conjectured that every graph with minimum degree at least $2n/3$ contains a hamiltonian square cycle. Komlós, Sárközy and Szemerédi used the Regularity Lemma of Szemerédi and their own Blow-up Lemma to verify the truth of this conjecture for huge graphs. In this talk, we consider an Ore-type version of Pósa’s conjecture. We prove that if G is a graph on n vertices such that $\text{deg}(u)+\text{deg}(v) \geq 4n/3-1/3$ for all non-adjacent vertices u and v, then for sufficiently large n, G contains a hamiltonian square cycle unless its minimum degree is exactly $n/3 + 2$ or $n/3 + 5/3$. We also discuss three extremal examples showing that all conditions in the theorem are tight. (Received September 22, 2009)