Pósa proved that if \(G \) is an \(n \)-vertex graph in which any two nonadjacent vertices have degree sum at least \(n + k \), then \(G \) has a spanning cycle containing any specified family of disjoint paths with a total of \(k \) edges. We consider the analogous problem for a bipartite graph \(G \) with \(n \) vertices and parts of equal size. Let \(F \) be a subgraph of \(G \) whose components are nontrivial paths. Let \(k \) be the number of edges in \(F \), and let \(t_1 \) and \(t_2 \) be the numbers of components of \(F \) having odd and even length, respectively. For \(n \geq 9k + 4 \), there is a spanning cycle in \(G \) containing \(F \) if any two nonadjacent vertices in opposite partite sets have degree-sum at least \(n/2 + \tau(F) \), where \(\tau(F) = \lceil k/2 \rceil + \epsilon \) (here \(\epsilon = 1 \) if \(t_1 = 0 \) or if \((t_1, t_2) \in \{(1, 0), (2, 0)\} \), and \(\epsilon = 0 \) otherwise). The threshold on the degree-sum is sharp. (Received September 18, 2009)