Points on Quadratic Twists of $X_0(N)$.

Let $X^d(N)$ be the modular curve described as quadratic twist of $X_0(N)$ by a quadratic field $K = \mathbb{Q}(\sqrt{d})$ and w_N. Rational points on this twist are K-rational points of $X_0(N)$ that are fixed by σ composed with w_N where σ is the generator of $\text{Gal}(K/\mathbb{Q})$. Unlike $X_0(N)$, it’s not immediate to say that there are points (global or local) on $X^d(N)$. Given (N, d, p) we give necessary and sufficient conditions for existence of a \mathbb{Q}_p-rational point on $X^d(N)$, answering the following question of Ellenberg:

For which d and N there exists points on $X^d(N)$ for every completion of \mathbb{Q}? (Received September 22, 2009)