Mark Kozek* (mkozek@whittier.edu), Mathematics Department, Whittier College, Whittier, CA 90608-0634. An asymptotic formula for Goldbach’s conjecture with monic polynomials.

Let \(f(x) \) be a monic polynomial in \(\mathbb{Z}[x] \) of degree \(d > 1 \). Hayes (1965) proved a form of Goldbach’s conjecture with monic polynomials: there exist irreducible monic polynomials \(g(x) \) and \(h(x) \) in \(\mathbb{Z}[x] \) with the property that \(f(x) = g(x) + h(x) \).

We give a proof that the number \(R(y) \) of representations of \(f(x) \) as a sum of two irreducible monic polynomials \(g(x) \) and \(h(x) \) in \(\mathbb{Z}[x] \), with the coefficients of \(g(x) \) and \(h(x) \) bounded in absolute value by \(y \), is asymptotic to \((2y)^{d-1} \). (Received September 22, 2009)