The inverse Galois problem is still one of the greatest open problems in group theory. It asks, given a group G and a field F, can we always find a Galois extension of F having Galois group G? Kummer theory answers this question for fields F containing primitive pth-roots of unity and groups G that are direct sums of $\mathbb{Z}/p\mathbb{Z}$s. In such cases, adjoining pth-roots of elements to F yields finite Galois extensions with abelian Galois groups of exponent p, and conversely every such Galois extension is of this form. Furthermore, if we are given that F is a finite Galois extension over some field B, and L is a Kummer extension of F, it is straightforward to determine whether L is also Galois over B. In that case, it is possible to characterize the Galois group of L over B by computations within F. The goal of my research is to extend this result to Artin Schreier theory, the positive characteristic analogue to Kummer theory. (Received September 22, 2009)