The aim of this talk is to present some concepts and techniques from p-potential theory on Riemannian manifolds adapted to finite and infinite graphs. Namely, we will define p-capacity based on similar concept in continuous settings, which will be used to classify the graphs as p-hyperbolic and p-parabolic. The notions of p-hyperbolicity and p-parabolicity are useful in handling the existence or nonexistence of solutions in the class of p-Dirichlet functions to the Poisson equation for p-Laplacian. In previous talk, we showed how to get explicit formulas for the computation of the p-capacity of the lattices \mathbb{Z}^n and the homogenous trees T_d.

In this talk, we will focus specifically on p-hyperbolic lattices \mathbb{Z}^n and highlight the computation of their p-capacity in terms of the Zeta function.

(Received September 22, 2009)