We investigate the oscillatory behavior of second order nonlinear dynamic equations of the form \((a(x^{\Delta}))^{\alpha}(t) + q(t)x^{\beta}(t) = 0 \), their forced and forced-perturbed extensions, as well as similar behavior of equations of the type \((a(t)(x^{\Delta}(t)))^{\alpha} + f(t, x^{\sigma}(t)) = 0 \), on an arbitrary time scale \(\mathbb{T} \), where \(\alpha \) and \(\beta \) are ratios of positive odd integers, \(a \) and \(q \) are real-valued, positive, rd-continuous functions on \(\mathbb{T} \) and \(f : [t_0, \infty) \times \mathbb{R} \to \mathbb{R} \) is continuous, \(\text{sign } f(t, x) = \text{sign } x \), with \(f(t, x) \) being non-decreasing in \(x \) for each fixed \(t \geq t_0 \). (Received September 21, 2009)