The Lang-Kobayashi system of delay differential equations describes the behavior of the complex electric field ε and the inversion N inside an external cavity semiconductor laser. This system has a family of special periodic solutions known as External Cavity Modes (ECMs). It is well known that these ECM solutions appear through saddle-node bifurcations, then lose stability through a Hopf bifurcation before new ECM solutions are born through a secondary saddle-node bifurcation. Employing analytical and numerical techniques, we show that for certain short external cavity lasers the loss of stability happens only after the secondary saddle-node bifurcations, which means that stable ECM solutions can coexist in these systems. We also investigate the basins of these ECM attractors. (Received August 02, 2009)