We consider weak solutions to a boundary value problem for Maxwell’s equations with a dissipative boundary condition. Energy estimates show that the tangential components of the electric and the magnetic field are in L^2. However, since the boundary is characteristic, no statement can be made about the normal components of the vector fields. We manage to obtain L^2 regularity for these normal components by including a divergence condition on the initial data. This result does not follow from the trace theorem in Sobolev Spaces, hence it can be classified as a ”hidden regularity” result. Boundary regularity of weak solutions is of importance when it come to shape optimization. The shape derivative for this boundary value problem is established. This is a joint work with John Cagnol from the Pôle Universitaire Lèonard da Vinci in Paris. (Received September 15, 2009)