Teresa Bates, David Pask and Paulette N. Willis* (pnwillis@math.uiowa.edu), 70 Cherry Ct., Apt 2, North Liberty, IA 52317. Labeled Graph C^*-algebras with Group Actions.

In this presentation, I will discuss joint work with Teresa Bates and David Pask concerning (discrete) group actions on labeled graphs and the resulting crossed product C^*-algebras. In particular, I will discuss a version of the Gross-Tucker Theorem for labeled graphs. I will also discuss analogues of some of our results in the context of Leavitt path algebras.

A labeled graph (E, \mathcal{L}) over an alphabet \mathcal{A} consists of a directed graph E together with a labeling map $\mathcal{L}: E^1 \to \mathcal{A}$. One can associate a C^*-algebra to a labeled graph (E, \mathcal{L}) in such a way that if the labeling \mathcal{L} is trivial then the resulting C^*-algebra is the C^*-algebra of the graph E. Further, just as there is a canonical correspondence between graph C^*-algebras and shifts of finite type, there is a similar correspondence between the C^*-algebras of labeled and sophic shifts. (Received September 20, 2009)