We consider a partially observed stochastic control problem with operator valued measures as controls. This is given by the following stochastic differential equation on the Hilbert space X coupled with an algebraic equation representing noisy measurement process taking values from another Hilbert space Y as follows:

\[
\begin{align*}
\frac{dx}{dt} &= Ax(t) + B(y(t-)) + \sigma(t)dW(t), \quad t \in I \equiv [0,T], \quad x(0) = x_0 \\
y(t) &= C(t)x(t) + \xi(t), \quad t \in I.
\end{align*}
\]

The process x is the state, y is the observation and W is a Brownian motion taking values from a Hilbert space H and ξ is an arbitrary second order Y valued random processes. The operator A is the generator of a C_0-semigroup of bounded linear operators on X, $B \in M_{cabv}(\Sigma, \mathcal{L}(Y, X))$ and $\sigma \in B_\infty(I, \mathcal{L}(H, X))$. The problem is to find a control policy $B \in \Gamma \subset M_{cabv}(\Sigma, \mathcal{L}(Y, X))$ that minimizes the functional

\[
J(B) = \int_I Tr(P(t)) \lambda(dt) + \int_I |\bar{x}(t) - x_d(t)|_X^2 \nu(dt) + \Phi(B),
\]

where $P(t)$ dependent on B, is the covariance operator taking values from the space of nuclear operators $\mathcal{L}_1(X)$ and λ and ν are nonnegative measures. (Received July 09, 2009)