We consider the problem of maximizing the number of edges in a graph G on n vertices under the restriction that the number of perfect matchings in G is a given constant p. Dudek and Schmitt showed that this number approaches $\frac{n^2}{4} + c_p$ as n grows, where c_p is a constant depending only on p. This work extends the understanding of the sequence c_p, including some constructive lower bounds and a conjecture on its exact value. Moreover, we present some structural results on graphs which achieve the extremal number of edges.

This is part 1 of this talk. (Received September 21, 2010)