Let k be a field of characteristic zero, and let $R = k[x_1, \ldots, x_n]$ be a standard graded polynomial ring in n variables over k. For M, a finitely generated zero-dimensional R-graded module with the strong Lefschetz property, we introduce a new property of the Hilbert function, the almost centered property. We show that $M \otimes_k k[y]/(y^m)$ has the strong Lefschetz property for y an indeterminate and all positive integers m if and only if the Hilbert function of M has the almost centered property. This result gives a new proof of Stanley’s theorem that $k[x_1, \ldots, x_n]/(x_1^{a_1}, \ldots, x_n^{a_n})$ has the strong Lefschetz property. We also discuss what happens in the case where the characteristic of the field is positive. (Received September 13, 2010)