Let k be a field of characteristic zero. The simple Lie algebra $W_1 = \text{Der } k[x]$, the one-sided Witt algebra, has a basis $e_i = x^{(i+1)} \frac{d}{dx}$ for i at least -1). For each i, the wedge of e_0 and e_i satisfies the classical Yang-Baxter equation, giving W_1 the structure of a coboundary triangular Lie bialgebra $(W_1)^{(i)}$. The continuous Lie dual of $(W_1)^{(i)}$ is also a Lie bialgebra, and has been identified with the space of k-linearly recursive sequences by W. Nichols [J. Pure Appl. Alg. 68(1990), 359-364]. Let $f=(f_n)$ and $g=(g_n)$ be linearly recursive sequences in the continuous linear dual of $(W_1)^{(i)}$, $[f,g]$ their Lie product. For each n, the n-th coordinate of $[f,g]$ has been described in terms of the coordinates of f and of g [E. J. Taft, J. Pure Appl. Alg. 87(1993), 301-312], but it was an open problem to give a recursive relation satisfied by $[f,g]$ in terms of recursive relations satisfied by f and by g. We give such a relation here. Analogous results hold for the two-sided Witt algebra $W=\text{Der } k[x,x^{(-1)}]$. (Received August 05, 2010)