Kendall Williams* (kendallist@yahoo.com). Elements of Polynomials evaluated at points of \(\beta S \). Preliminary report.

Given a set \(S \) with the discrete topology where both \((S, \cdot)\) and \((S, +)\) are semigroups, one may extend the operations on \(S \) to \(\beta S \), the Stone-\v{C}ech Compactification of \(S \). \(\beta S \) is comprised of the ultrafilters on \(S \). With respect to each of its operations individually, \(\beta S \) is a compact right topological semigroup containing \(S \) in its topological center.

Let \(k \in \mathbb{N} \) and \(g(z_1, z_2, \ldots, z_k) \) be an arbitrary polynomial with coefficients in \(S \). We shall evaluate \(g \) on certain elements of \(\beta S \), say \(p_1, p_2, \ldots, p_k \); making \(g(p_1, p_2, \ldots, p_k) \) itself an ultrafilter on \(S \). We characterize subsets of \(S \) that must be elements of the ultrafilter \(g(p_1, p_2, \ldots, p_k) \). (Received September 20, 2010)