Let X be a compact metric space, $f : X \to X$ be a continuous map, and $\{N_1, \ldots, N_n\}$ be a collection of nonempty compact sets. We say that (s_0, s_1, \ldots) is an itinerary for a point x if $f^i(x) \in N_{s_i}$ for all i. In the classical case of a Markov partition, the sets N_i overlap only on their boundaries and map across each other nicely under f; in this case the itineraries give symbolic dynamics in the form of a subshift of finite type. In this work we study the case where the sets N_i can overlap nontrivially and can map across each other in more complicated ways. We discuss methods for extracting useful information about the dynamics of f (such as a nonzero lower bound for the topological entropy) from the itineraries. (Received September 21, 2010)