Let φ be a holomorphic self-map of the unit ball B_n in \mathbb{C}^n and let ψ be holomorphic function on B_n. Then a weighted composition operator induced by φ with weight ψ is given by $(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z))$, for z in B_n and f holomorphic on B_n.

A positive compact operator T on the weighted Bergman space $A^2_{\alpha}(B_n)$ is in the trace class if

$$tr(T) = \sum_{n=1}^{\infty} \langle Te_n, e_n \rangle < \infty,$$

for some orthonormal basis $\{e_n\}$ of $A^2_{\alpha}(B_n)$. If $0 < p < \infty$ and T is a compact operator on $A^2_{\alpha}(B_n)$, then we say that T belongs to the Schatten p-class S_p if $(T^*T)^{p/2}$ is in the trace class.

It is known that weighted composition operators are related to Toeplitz operators on weighted Bergman spaces and Hardy space as well. We use this connection to Toeplitz operators, induced by positive measures and defined on the same space on which $W_{\psi,\varphi}$ acts, to characterize the Schatten p-class of weighted composition operators on weighted Bergman spaces. The results written in terms of the weighted φ-Berezin transform. (Received September 22, 2010)