In this paper, we investigate a particular Diophantine equation, \(X^2 + Y^3 = 6912Z^2 \), and a set of solutions to the equation, which are derived from some polynomials in \(\mathbb{Z}[x, y] \). We focus on three polynomials \(X = f(x, y) \), \(Y = g(x, y) \) and \(Z = h(x, y) \) that satisfy the Diophantine equation and the greatest common divisors for the integer values of the polynomials. These polynomials are relatively prime in \(\mathbb{Q}[x, y] \). However, for a fixed integer pair \(x_0, y_0 \), the integer values \(f(x_0, y_0) \), \(g(x_0, y_0) \) and \(h(x_0, y_0) \) are not necessarily relatively prime in \(\mathbb{Z}[x, y] \). We investigate the greatest common divisors (GCDs) between these three polynomial values for specific integer pairs \(x_0 \) and \(y_0 \). We focus on the cases where \(y = 1 \) and \(y = 2 \). For these cases, we give complete classifications on the distribution of the GCDs. We use the Gröbner Bases technique as an aid in investigating the GCDs for \(f, g, h \) in \(\mathbb{Z}[x, y] \). We then generalize the results from the cases \(y = 1 \) and \(y = 2 \) to obtain similar properties for the GCDs of \(f, g, h \) for all \(x \) and \(y \) in \(\mathbb{Z}[x, y] \). (Received September 17, 2010)