Martin Matamala and Erich Prisner* (prisner@erdos.math.louisville.edu), Department of Mathematics, University of Louisville, Louisville, KY, and Ivan Rapaport. k-Pseudosnakes in Large Grids.
Many combinatorial optimization problems can be reformulated in the search for a maximum independent set of a graph G, i.e. a set S of vertices inducing an edgeless subgraph. What happens if this total isolation of the vertices is not required, but instead we ask that every vertex of S is adjacent to at most k vertices of S in G ? We call an induced subgraph $G[S]$ of a graph G a k-pseudosnake if its maximum degree is at most k. Then we are interested in finding maximal k-pseudosnakes. For $k=2$ and G the D-dimensional hypercube, bounds have been given in several papers. In this paper we investigate these numbers for large grids - cartesian products of paths. We prove several upper bounds, give various constructions, and prove that these bounds are asymtotically optimal for every D when $k=0,1, D, 2 D-2$, or $2 D-1$. (Received October 02,2000)

