Erin M. Flickinger* (applerin@hotmail.com), USC P.O. Box 81054, Columbia, SC 29225-0112, and Daniel J. Schaal (DANIEL_SCHAAL@SDSTATE.EDU), Dept. of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007. Rado Numbers for $c(x 1+x 2+\ldots+x m-1)=x m$. Preliminary report.
For every positive integer c, and every integer $m>=3, \operatorname{Let} L(c, m)$ represent the following equation. $L(c, m): c(x 1+$ $x 2+\ldots+x m-1)=x m$. For every positive integer c, and every integer $m>=3$, let $r=R(c, m)$ be the least integer such that for every coloring $f: 1,2, \ldots, r \rightarrow 0,1$, there exists solution, $(x 1, x 2, \ldots, x m)$, to $L(c, m)$ such that $f(x 1)=f(x 2)=\ldots=f(x m)$. In this paper, we determine that $R(c, m)=c\left[\left((m-1)^{2}\right) c^{2}+(m-2)\right]$ for every positive integer c, and every integer $m>=3$. (Received October 02, 2000)

