962-05-1243 Stephen G. Hartke* (hartke@math.rutgers.edu), Department of Mathematics, Rutgers University, Hill Center - Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, and Aparna W Higgins (higgins@saber. udayton.edu), Department of Mathematics, University of Dayton, Dayton, OH 45469-2316. Minimum Degree Growth of the Iterated Line Graph.
Preliminary report.
Let δ_{k} denote the minimum degree of the $k^{\text {th }}$ iterated line graph $L^{k}(G)$. For any connected graph G that is not a path, the inequality $\delta_{k+1} \geq 2 \delta_{k}-2$ holds. Niepel, Knor, and Šoltés have conjectured that there exists an integer K such that, for all $k \geq K$, equality holds; that is, the minimum degree δ_{k} attains the least possible growth. We prove this conjecture using methods similar to those developed to prove the corresponding conjecture for the maximum degree Δ_{k}. (Received October 03, 2000)

