Capacities of Graphs and Hypergraphs.
Given a hypergraph H, the chromatic capacity $\chi_{\text {cap }}(H)$ of H is the largest k for which there exists a k-coloring of the edges of H such that, for every coloring of the vertices of H with the edge colors, the exists an edge that has the same color as both of its endpoints. When H is an r-regular hypergraph, $r>1$, with maximum degree Δ, we show that $\chi_{c a p}(H)<(1+o(1)) \sqrt[r]{r \Delta}$, improving a result of Cochand and Károlyi (Discrete Math. 194 (1999) 249-252). This in turn yields an improved bound of $\hat{\chi}^{(k)}(\mathbb{R})<(4+o(1)) k$, where $\hat{\chi}^{(k)}(\mathbb{R})$ denotes the k th upper chromatic number of the reals. We also answer a question of Archer (Discrete Math. 214 (2000) 65-75) by exhibiting a family of graphs for which $\chi_{\text {cap }}(G)=\chi(G)-1$ for arbitrarily large $\chi(G)$, the ordinary chromatic number of the graph G. Lastly, we give a complete characterization of graphs G with $\chi_{\text {cap }}(G)=1$. (Received August 28, 2000)

