962-05-475 Michael S Lang* (mlang@math.wisc.edu). Bipartite Distance-Regular Graphs, Three-Term Recurrent Eigenvalues, and Representation Diagrams.
Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$ and valency $k \geq 3$. Let θ denote an eigenvalue of Γ other than $k,-k$ and let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{D}$ denote the associated cosine sequence. We show

$$
\left(\sigma_{1}-\sigma_{i+1}\right)\left(\sigma_{1}-\sigma_{i-1}\right) \geq\left(\sigma_{2}-\sigma_{i}\right)\left(\sigma_{0}-\sigma_{i}\right)
$$

for $1 \leq i \leq D-1$. We show the following are equivalent: (i) equality is attained above for $i=3$ (ii) equality is attained above for $1 \leq i \leq D-1$ (iii) the cosines obey a linear three-term recurrence. We say θ is three-term recurrent (or TTR) whenever (i)-(iii) are satisfied. We relate TTR eigenvalues to the Q-polynomial property. When an eigenvalue is TTR, we find formulae for the intersection numbers and eigenvalues of Γ in terms of two parameters, classifying Γ in some cases. Among the eigenvalues in their natural order, we consider which can be TTR. If Γ has more than one TTR eigenvalue, we show Γ is either the D-cube or antipodal with $D \leq 5$. Let Δ denote the θ-representation diagram. For $D>6$, we show the following are equivalent: (a) in Δ, θ is adjacent to at most one vertex other than k (b) Δ is either a path or two paths (c) θ is TTR. (Received September 14, 2000)

