962-11-1018 Cormac O'Sullivan* (cormac@math.umd.edu). Analytic aspects of Eisenstein series formed with powers of modular symbols.

Let $\Gamma = \Gamma_0(N)$ be the Hecke congruence group of level N and \mathfrak{H} the upper half plane. Define $S_2(\Gamma)$ to be the space of weight two holomorphic cusp forms on $\Gamma \setminus \mathfrak{H}$ and for γ in Γ and f in $S_2(\Gamma)$ set

$$\langle \gamma, f \rangle = 2\pi i \int_{\gamma z}^{z} f(\tau) \, d\tau.$$

Then we call $\langle \gamma, f \rangle$ a modular symbol. Finally define the series

$$E^{m,n}(z,s;f,g) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} \langle \gamma, f \rangle^m \overline{\langle \gamma, g \rangle}^n \operatorname{Im}(\gamma z)^s$$

for z in \mathfrak{H} , s in \mathbb{C} , $f, g \in S_2(\Gamma)$ and $\Gamma_{\infty} = \{\gamma \in \Gamma \mid \gamma \infty = \infty\}$. This is a real analytic function of z and an analytic function of s for $\operatorname{Re}(s) > m + n + 1$. It has a meromorphic continuation to all $s \in \mathbb{C}$. We'll look at the analytic properties of this series along with some applications, generalizations and open questions. (Received October 01, 2000)