Thomas J. Tucker* (ttucker@math.uga.edu), Department of Mathematics, University of Georgia, Athens, GA 30602. Thue equations and the method Chabauty-Coleman.
A Thue equation is an equation of the form $F(x, y)=m$ where m is an integer and F is a polynomial with integer coefficients and no repeated roots. A primitive integer solution to the Thue equation $F(x, y)=m$ is a pair of integers a, b such that $\operatorname{gcd}(a, b)=1$ and $F(a, b)=m$. In this talk, we will show that when the degree n of F is at least 3 , and the Mordell-Weil rank of the Jacobian of the corresponding projective curve $F(x, y)=h z^{n}$ is less than $(n-1)(n-2) / 2$, there are at most $O\left(n^{3}\right)$ primitive integer solutions to the equation $F(x, y)=h$. The proof utilizes the method of ColemanChabauty, generalized here to work at primes of bad reduction, along with an explicit computation of large portions of a regular model for $F(x, y)=h z^{n}$ over the p-adic integers. This talk represents joint work with D. Lorenzini. (Received October 02, 2000)

