962-11-1120 Mugurel A. Barcau^{*} (barcau@math.unm.edu), University of New Mexico, Department of Mathematics and Statistics, Albuquerque, NM 87131. The affine line modulo isogeny.

Let Y(1) classify the isomorphism classes of elliptic curves E/\mathbb{C} . Then one has an analytic isomorphism $j: Y(1) \longrightarrow \mathbb{A}^1_{\mathbb{C}}$, $E \longmapsto j(E)$ onto the set of \mathbb{C} -points of the affine line, where j(E) is the j-invariant of the elliptic curve E/\mathbb{C} . We say that $x \in \mathbb{A}^1_{\mathbb{C}}$ is isogeneous to $y \in \mathbb{A}^1_{\mathbb{C}}$, in notation $x \stackrel{isog}{\sim} y$, if there exists an isogeny $\pi : E_x \longrightarrow E_y$ defined over \mathbb{C} , with $x = j(E_x)$ and $y = j(E_y)$. Let $\mathbb{A}^1_{\mathbb{C}}/isogeny$ be the set of cosets of $\mathbb{A}^1_{\mathbb{C}}$ modulo the equivalence relation $\stackrel{isog}{\sim}$. We cannot expect to find any reasonable object in the usual algebraic geometry, whose \mathbb{C} -points are naturally in bijection with $\mathbb{A}^1_{\mathbb{C}}/isogeny$, because the equivalence classes of $\stackrel{isog}{\sim}$ are dense in the complex topology. We will be able to find a geometric substitute for the quotient " $\mathbb{A}^1/isogeny$ " in the "new" geometry obtained by "adjoining" one new operation to the "classical" one, that plays the role of a derivation. (Received October 03, 2000)