result is explicitly constructive and concerns, not the partitions of the set of integers N , but the set of partitions, of cardinality $p(n)$, of the integer n. NOTATION: ($n ; m$) will denote the A.P. (or, depending on the context, the set of its terms) with greatest term n , common difference between terms or modulus m , and form: $\mathrm{n}, \mathrm{n}-\mathrm{m}, \ldots, \mathrm{n}(\bmod \mathrm{m})$ (least nonnegative). CONSTRUCTION: $((\mathrm{n} ; \mathrm{m}) ; \mathrm{k})$ denotes the set or, more precisely, cf. Lemma, the system of A.P.s formed by taking successively each term of the modulus m A.P., ($\mathrm{n} ; \mathrm{m}$), as the greatest term of a modulus k A.P. LEMMA: $((\mathrm{n} ; \mathrm{m}) ; \mathrm{k})=((\mathrm{n} ; \mathrm{k}) ; \mathrm{m})$. DEFINITION: $(\mathrm{n} ; \mathrm{m}, \mathrm{k})=((\mathrm{n} ; \mathrm{m}) ; \mathrm{k})$. Similarly, we form the A.P. system $((\ldots((\mathrm{n} ; 2) ; 3) \ldots) ; \mathrm{n})$ $=(\mathrm{n} ; 2,3, \ldots, \mathrm{n})$, of which the terms are those of its A.P.s. This system can be represented geometrically in (n-1) dimensional space, A.P.s of the same modulus being mutually parallel and those of different moduli being mutually orthogonal. We exhibit a bijection to obtain the THEOREM: $\operatorname{Card}(\mathrm{n} ; 2,3, \ldots \mathrm{n})=\mathrm{p}(\mathrm{n})$. These results prefigure other results of subsequent papers. (⑳00 Jasmer Singh). (Received September 24, 2000)

